ΔNp63 Controls a TLR3-Mediated Mechanism That Abundantly Provides Thymic Stromal Lymphopoietin in Atopic Dermatitis
نویسندگان
چکیده
In the skin lesions of atopic dermatitis (AD), keratinocytes release large quantities of thymic stromal lymphopoietin (TSLP), causing unfavorable inflammation along with skin damage. Nevertheless, how TSLP influences keratinocytes themselves is still unknown. In this study, we showed that ΔNp63, a p53-homologue, predominantly expressed in keratinocytes regulated the receptor complex of TSLP, which determines susceptibility to self-derived TSLP. Expression of TSLP receptors in skin tissues and keratinocytes was assessed by immunohistochemistry and quantitative RT-PCR, and in vitro studies were also performed to examine the functional relevance of ΔNp63 in the expression of TSLP receptors and the constituting autocrine and/or paracrine pathway of TSLP under the condition of stimuli to innate receptors sensing cell damage. The results showed that normal keratinocytes in the upper epidermis preferentially expressed TSLP receptors and conversely lacked ΔNp63, which has an inhibitory effect on the expression of TSLP receptors. Interestingly, the epidermis of AD lesions was found to abundantly contain keratinocytes with low or undetectable levels of ΔNp63 (ΔNp63(lo/-)). Moreover, in the absence of ΔNp63, keratinocytes readily presented TSLP and other cytokines by stimuli through Toll-like receptor 3 (TLR3). Together with the evidence that extrinsic TSLP itself augments TSLP production by keratinocytes without ΔNp63, the results indicate that ΔNp63(lo/-) keratinocytes generate TSLP through a putative autocrine and/or paracrine pathway upon TLR3 stimulation within AD lesions, since moieties of damaged cells and pathogens stimulate TLR3.
منابع مشابه
Pathogenesis of Atopic Dermatitis: Current Paradigm
Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction and chronic pruritus. In this review, recent advances in the pathogenesis of AD are summarized. Clinical efficacy of the anti-IL-4 receptor antibody dupilumab implies that type 2 cytokines IL-4 and IL-13 have pivotal roles in atopic inflammation. The expression of IL-4 and IL-13 as well as type 2 chemokines such a...
متن کاملThymic stromal lymphopoietin: master switch for allergic inflammation
Thymic stromal lymphopoietin (TSLP) is an interleukin (IL) 7-like cytokine that triggers dendritic cell-mediated T helper (Th)2 inflammatory responses. TSLP is highly expressed by keratinocytes in skin lesions of patients with atopic dermatitis and is associated with dendritic cell activation in situ, suggesting that TSLP might be a master switch for allergic inflammation at the epithelial cell...
متن کاملCurrent evidence of epidermal barrier dysfunction and thymic stromal lymphopoietin in the atopic march.
It has long been observed that the development of asthma, allergic rhinitis and food allergy are frequently preceded by atopic dermatitis, a phenomenon known as the "atopic march". Clinical, genetic and experimental studies have supported the fact that atopic dermatitis could be the initial step of the atopic march, leading to the subsequent development of other atopic diseases. This brief revi...
متن کاملThymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma.
Atopic dermatitis (AD) is often the initial step in the "atopic march," given that more than half of AD patients with moderate to severe AD develop asthma later in life. Both AD and asthma share a similar "atopy" phenotype that includes T helper type 2 inflammation with eosinophilia and hyper-IgE immunoglobulinemia, but the molecular mechanisms underlying the "atopic march" remain elusive. In t...
متن کاملThymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells
Compelling evidence suggests that the epithelial cell-derived cytokine thymic stromal lymphopoietin (TSLP) may initiate asthma or atopic dermatitis through a dendritic cell-mediated T helper (Th)2 response. Here, we describe how TSLP might initiate and aggravate allergic inflammation in the absence of T lymphocytes and immunoglobulin E antibodies via the innate immune system. We show that TSLP,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014